
DISTANCE TO A MEASURE

Contents

1. Distance-Like Functions 2
2. Wasserstein Distance 4
3. Distance to a Measure 5

3.1. Definition 5
3.2. Distance to Empirical Measures 6
3.3. Equivalent Formulation 7
3.4. Stability of the Distance to a Measure 8
3.5. The Distance to a Measure is a Distance-Like Function. 9

4. Application to Geometric Inference 10
4.1. Distance to a Measure vs. Distance to its Support 10
4.2. Shape Reconstruction from Noisy Data 11

5. Further Sources 11
References 12

It is well known that distance-based methods in tda may fail completely
in the presence of outliers. Indeed, adding even a single outlier to the point
cloud can change the distance function dK dramatically (see Figure 1). To
overcome this issue, [CCSM11] introduced an alternative distance function
which is robust to noise, the distance-to-a-measure (DTM).

Figure 1. The effect of outliers on the sublevel sets of dis-
tance functions. Adding just a few outliers to a point cloud
may dramatically change its distance function and the topol-
ogy of its offsets.

The DTM satisfies properties that are very similar to those of a distance
function, yielding nearly identical inference results. In other words, it ap-
pears that we can write roughly the same reconstruction result as for offsets
of a compact (see previous lesson) for the sublevels sets of the DTM. Such
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2 DISTANCE TO A MEASURE

functions are called distance-like. Let us first present these functions and
their properties in their full generality.

1. Distance-Like Functions

All the inference results of the Reconstruction of Compact Sets lesson
follow from only three fundamental properties of distance functions:

(i) Stability of the map K → dK : for any compact subsets K,K ′ of Rd we
have

∥dK − dK′∥∞ = dH(K,K
′).

(ii) For any compact set K of Rd, the distance function dK is 1-Lipschitz:
for all x, x′ ∈ Rd, |dK(x)− dK′(x)| ⩽ ∥x− x′∥.

(iii) For any compact set K of Rd, the distance function d2K is 1-semiconcave:

x 7→ ∥x∥2 − d2K(x) is convex.

The first property is an obvious condition to ensure that the offsets of two
close compact sets are close to each other. The second and third properties
are the fundamental ingredients to prove the existence and integrability of
the gradient of dK and the isotopy lemma. These results still hold for
general proper semiconcave functions, motivating the following definition of
functions that are of particular interest for geometric inference.

Definition 1.1 (Distance-Like Function). A non-negative function ϕ : Rd →
R⩾0 is distance-like if

(i) ϕ is 1-Lipschitz;

(ii) ϕ2 is 1-semiconcave, i.e. x 7→ ∥x∥2 − ϕ2(x) is convex.
(iii) ϕ is proper, i.e. for all compact set K ⊂ R, ϕ−1(K) is compact.

Remark 1.2 (WhyDistance-Like?). One can show that if ϕ2 is 1-semiconcave,
there exists a closed subsetK of Rd+1 such that ϕ(x) = dK(x) for all x ∈ Rd,
where x ∈ Rd is identified with (x, 0) in Rd+1.

This remark also shows that ϕ2 being 1-semiconcave and proper yields au-
tomatically ϕ distance-like: the Lipschitz property comes from 1-semiconcavity
for free.

Let ϕ : Rd → R be distance-like. The 1-semiconcavity of ϕ2 allows to
define a notion of gradient vector field ∇ϕ(x) for ϕ, defined everywhere and
satisfying ∥∇ϕ(x)∥ ⩽ 1.

Although not continuous, the vector field ∇ϕ is sufficiently regular to
be integrated in a continuous locally Lipschitz flow Φ(·, t) : Rd → Rd for
t ⩾ 0. The flow Φ(·, t) integrates the gradient ∇ϕ in the sense that for
all x ∈ Rd, the curve γ : t 7→ Φ(x, t) is right-differentiable, and for all
t > 0, γ′(t−) = ∇ϕ(γ(t)). Moreover, for all integral curve γ : [a, b] → Rd
parametrized by arc-length,

ϕ(γ(b)) = ϕ(γ(a)) +

∫ b

a
∥∇ϕ(γ(t))∥ dt.

Remark 1.3. (i) We denote by ϕr = ϕ−1([0, r]) the r-sublevel set of ϕ.
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(ii) A point x ∈ Rd will be called α-critical, for 0 ⩽ α ⩽ 1, if for all h ∈ Rd,

ϕ2(x+ h) ⩽ ϕ2(x) + 2α ∥h∥ϕ(x) + ∥h∥2 .

A 0-critical point is just called a critical point. It follows from the 1-
semiconcavity of ϕ2 that ∥∇ϕ(x)∥ is the infimum of the non-negative
α’s such that x is α-critical.

(iii) The weak feature size of ϕ at r, denoted by wfsϕ(r), is the maximum
r′ > 0 such that ϕ does not have any critial value between r and r + r′.
For all 0 < α < 1, the α-reach of ϕ is the maximum r such that ϕr =
ϕ−1([0, r]) does not contain any α-critical point. Notice that the α-reach
is always a lower bound for the weakfeature size, with r = 0.

The Isotopy lemma extends to distance-like functions.

Theorem 1.4 (Extended Isotopy Lemma). Let ϕ be a distance-like function
and r1 < r2 be two positive numbers such that ϕ has no critical points in
ϕ−1([r1, r2]). Then all the sublevel sets ϕr = ϕ−1([0, r]) are isotopic for
r ∈ [r1, r2].

The proof of the following theorem, showing that the offsets of two uni-
formly close distance-like functions with large weak feature size have the
same homotopy type, relies on Theorem 1.4 and is almost verbatim the
same as the one for dK (see the Reconstruction of Compact Sets lesson).

Proposition 1.5. Let ϕ and ψ be two distance-like functions, such that
∥ϕ− ψ∥∞ ⩽ ε. Suppose moreover that wfsϕ(r) > 2ε and wfsψ(r) > 2ε.
Then, for every 0 < η ⩽ 2ε, ϕr+η and ψr+η have the same homotopy type.

The critical point stability theorem also holds for general distance-like
functions.

Theorem 1.6. Let ϕ and ψ be two distance-like functions with ∥ϕ− ψ∥∞ ⩽
ε. For any α-critical point x of ϕ, there exists a α′-critical point x′ of ψ
with ∥x− x′∥ ⩽ 2

√
εϕ(x) and α′ ⩽ α+ 2

√
ε/ϕ(x).

Proof. Almost verbatim the same as the proof in the Reconstruction of Com-
pact Sets lesson. □

Corollary 1.7. Let ϕ and ψ be two ε-close distance-like functions, and
suppose that reachα(ϕ) ⩾ R for some α > 0. Then ψ has no critical value
in the interval (4ε/α2, R− 3ε).

Proof. Almost verbatim the same as the proof in the Reconstruction of Com-
pact Sets lesson. □

Theorem 1.8 (Extended Reconstruction Theorem). Let ϕ and ψ be two
ε-close distance-like functions, and suppose that reachα(ϕ) ⩾ R for some
α > 0. Then for all r ∈ [4ε/α2, R− 3ε] and 0 < η < R, the sublevel sets ψr

and ϕη are homotopy equivalent, as soon as

ε ⩽
R

5 + 4/α2
.
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Proof. By the extended isotopy Theorem 1.4, all the sublevel sets ψr have
the same homotopy type for r in the given range. Let us choose r = 4ε/α2.
We have

wfsϕ(r) ⩾ R− 4ε/α2 and wfsψ(r) ⩾ R− 3ε− 4ε/α2.

By Proposition 1.5, the sublevel sets ϕr and ψr have the same homotopy
type as soon as the uniform distance ε between ϕ and ψ is smaller than
wfsϕ(r)/2 and wfsψ(r)/2. This is true provided that 2ε ⩽ R − ε(3 + 4α2),
which yields the result. □

Remark 1.9. The notion of α-reach could be made dependent on a pa-
rameter r, i.e. the (r, α)-reach of ϕ could be defined as the maximum r0
such that the set ϕ−1([r, r + r0]) does not contain any α-critical value. A
reconstruction theorem similar to Theorem 1.8 would still hold under the
weaker condition that the (r, α)-reach of ϕ is positive.

2. Wasserstein Distance

There is a whole family of Wasserstein distances Wp, 1 ⩽ p ⩽ ∞, between

probability measures in Rd. Their definition relies on the notion of transport
plan between measures. Although some of the results of this chapter can
be stated for any distance Wp, for technical reasons that will become clear
below, we only consider the W2 distance.

Definition 2.1 (Transport Plan, Cost). A transport plan between two prob-
ability measures µ and ν on Rd is a probability measure π on Rd ×Rd such
that for every Borel sets A,B ⊂ Rd,

π(A× Rd) = µ(A) and π(Rd ×B) = ν(B).

The cost of such a transport plan π is given by

C(π) =
(∫

Rd×Rd

∥y − x∥2 dπ(x, y)
)1/2

.

Example 2.2. Consider two probability measures with finite supports

µ =
n∑
i=1

ciδxi and ν =
m∑
j=1

djδyj

with
∑n

i=1 ci =
∑m

j=1 dj = 1. A transport plan between µ and ν can be

represented by a n ×m matrix π = (πi,j)i,j with nonnegative entries such
that

m∑
j=1

πi,j = ci and
n∑
i=1

πi,j = dj .

The coefficient πi,j can be seen as the amount of the mass of µ located at
xi that is transported to yj . The cost of such a transport is then given by

C(π) =

 n∑
i=1

m∑
j=1

∥yj − xi∥2
1/2

.
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Definition 2.3 (Wasserstein Distance of Order 2). Given two probability
measures µ, ν with finite second order moments, W2(µ, ν) is the minimum
cost C(π) of a transport plan π between µ and ν.

Remark 2.4. (i) The space of probability measures with finite moment of
order 2 endowed with W2 is a metric space.

(ii) W2 provides an interesting notion to quantify the resilience to outliers.
To illustrate this, consider a set P = {x1, x2, . . . , xN} of N points in
Rd and a noisy version P ′ obtained by replacing the first n points in P
by points yi such that dP(y) = R > 0, for 1 ⩽ i ⩽ n. If we denote by
µ = 1

N

∑
p∈P δp and ν = 1

N

∑
q∈P ′ δq the uniform measures on P and P ′

respectively, then

W2(µ, ν) ⩽

√
n

N
(R+ diam(P)),

while the Hausdorff distance between P and P ′ is at least R. To prove
this inequality, consider the transport plan π from ν to µ that moves the
outliers back to their original position and leave the other points fixed.

3. Distance to a Measure

In this section, we associate, to any probability measure in Rd, a family
of real-valued functions that are both distance-like and robust with respect
to perturbations of the probability measure.

3.1. Definition. The distance function to a compact set K evaluated at
x ∈ Rd is the smallest radius r such that B(x, r) contains at least a point of
K. A natural idea to adapt this definition when K is replaced by a measure
µ is to consider the smallest radius r such that B(x, r) contains a given
fraction m of the total mass of µ.

Definition 3.1. Let µ be a Borel probability distribution on Rd and 0 ⩽
m < 1 a given parameter. We denote by δµ,m : Rd → R⩾0 the function

δµ,m(x) = inf {r > 0|µ (B(x, r)) > m} ,

where B(x, r) denotes the closed ball of radius r centered at x.

Remark 3.2. (i) For m = 0, the definition coincides with the (usual) dis-
tance function to the support of µ.

(ii) For all 0 ⩽ m < 1, δµ,m is 1-Lipschitz.
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Figure 2. Computation of the distance to the empirical
measure associated to a point set C. xC(k) denotes the kth
nearest neighbor of x in C.

(iii) Unfortunately, the function δµ,m is not robust to perturbations of the
measure µ. More precisely, µ 7→ δµ,m is not continuous, as showed by
the following example. Let µε :

(
1
2 − ε

)
δ0 +

(
1
2 + ε

)
δ1 be the weighted

sum of Dirac measures at 0 and 1 in R, and m = 1/2. Then, if t < 0,
– for ε ⩾ 0, δµε,1/2(t) = |1− t|;
– for ε < 0, δµε,1/2(t) = |t|.
This means that ε 7→ δµε,1/2 is not continuous at ε = 0. To overcome

this issue we define the distance function associated to µ as a L2 average
of the pseudo-distances δµ,m for a range [0,m0] of parameters m.

Definition 3.3 (Distance-to-Measure). Let µ be a Borel probability dis-
tribution on Rd and 0 < m0 ⩽ 1 be a mass parameter. We denote by
dµ,m0 : Rd → R⩾0 the function

d2µ,m0
(x) =

1

m0

∫ m0

0
δ2µ,m(x)dm.

3.2. Distance to Empirical Measures. An interesting property of the
above defined functions is that they have a simple expression in terms of
nearest neighbors. More precisely, let C be a point cloud with n points in
Rd and µC = 1

n

∑
p∈C δp be the uniform distribution on C.

For 0 < m ⩽ 1, the function δµC ,m evaluated at a given point x ∈ Rd is
by definition equal to the distance between x and its k-th nearest neighbor
in C, where k is the smallest integer larger than mn. Hence the function
m 7→ δµC ,m(x) is constant and equal to the distance from x to its kth

nearest neighbor in C on each interval [k−1
n , kn). Integrating the square of

this piecewise constant functions gives the following expression for d2µC ,m0
,



DISTANCE TO A MEASURE 7

Figure 3. The distance function to a measure as a usual
distance function in an infinite dimensional space.

where m0 = k0/n:

d2µC ,m0
(x) =

1

m0

∫ m0

0
δ2µC ,m(x)dm

=
1

m0

k0∑
k=1

1

n
δ2µC ,k/n(x)

=
1

k0

∑
p∈NN

k0
C (x)

∥p− x∥2 ,

where NNk0
C (x) denotes the first k0th nearest neighbors of x in C. As a

consequence the pointwise evaluation of dµC ,k0/n(x) reduces to a k0-nearest
neighbor query in C.

3.3. Equivalent Formulation. In this paragraph, we provide another char-
acterization of the distance function to a measure dµ,m0 showing that it is
in fact the distance function to a closed set, but in the non Euclidean space
of probability measures endowed with the W2 metric (see Figure 3). This
equivalent formulation will be used to deduce that µ 7→ dµ,m0 is Lipschitz
and x 7→ dµ,m0(x) is semiconcave.

Definition 3.4 (Submeasure). A measure ν is a submeasure of another
measure µ if for every Borel set B of Rd, ν(B) ⩽ µ(B).

Remark 3.5. (i) The set of all submeasures of a given measure µ is de-
noted by Sub(µ).

(ii) The set of submeasures of µ with a prescribed total mass m0 > 0 is
denoted by Subm0(µ).

Proposition 3.6. Let µ be a Borel probability distribution on Rd and 0 <
m0 ⩽ 1 be a mass parameter. Then for all x ∈ Rd,

dµ,m0(x) = min
ν∈Subm0 (µ)

1
√
m0

W2(m0δx, ν).

Moreover, for any measure µx,m0 that realizes the above minimum,

dµ,m0(x) =

(
1

m0
∥x− h∥2 dµx,m0(m)

)1/2

.

Remark 3.7. (i) Said otherwise, dµ,m0(x) is the minimal Wasserstein dis-
tance between the Dirac mass m0δx and the set of submeasures of µ
with total mass m0.
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(ii) The set Rµ,m0(x) of submeasures minimizing the above expression cor-
responds to the nearest neighbors of the Dirac measure m0δx on the set
of submeasures Subm0(µ). It is not empty but it might not be reduced
to a single element. Indeed, it coincides with the set of submeasures
µx,m0 of total mass m0 whose support is contained in the closed ball

B(x, δµ,m0(x)), and whose restriction to the open ball
◦
B(x, δµ,m0(x)) co-

incides with µ.

3.4. Stability of the Distance to a Measure. The characterization of
dµ,m0 given in Proposition 3.6 provides a pretty simple way to prove the
stability of µ 7→ dµ,m0 .

Theorem 3.8 (Stability of the DTM). Let µ, µ′ be two Borel probability
distributions on Rd and m0 > 0. Then,∥∥dµ,m0 − dµ′,m0

∥∥
∞ ⩽

1
√
m0

W2(µ, µ
′).

The proof of Theorem 3.8 follows from the following proposition.

Proposition 3.9. Let µ, µ′ be two Borel probability distributions on Rd and
m0 > 0. Then,

dH
(
Subm0(µ),Subm0(µ

′)
)
⩽ W2(µ, µ

′),

where dH stands for the Hausdorff distance in the space of probability mea-
sures endowed with the W2 metric.

Sketch of proof. Let ε = W2(µ, µ
′) and π be a corresponding optimal trans-

port plan, i.e. a transport plan between µ and µ′ that achieves C(π) = ε.
Given a submeasure ν of µ, one can find a submeasure π′ of π that transports
ν to a submeasure ν ′ of µ′ (notice that this latter claim is not completely
obvious and its formal proof is beyond the scope of this lesson. It can be
proven using the Radon-Nykodim’s theorem). Then,

W2(ν, ν
′)2 ⩽

∫
Rd×Rd

∥x− y∥2 dπ′(x, y) ⩽
∫
Rd×Rd

∥x− y∥2 dπ(x, y) = ε2.

This shows that dSubm0 (µ
′)(ν) ⩽ ε for every submeasure ν ∈ Subm0(µ). The

same holds exchanging the roles of µ and µ′, thus proving the bound on the
Hausdorff distance. □

Proof of Theorem 3.8. The following sequence of equalities and inequalities,
that follows from Propositions 3.6 and 3.9, proves the result:

dµ,m0(x) = dSubm0 (µ)
(m0δx)

⩽
1

√
m0

(
dH

(
Subm0(µ),Subm0(µ

′)
)
+ dSubm0 (µ

′)(m0δx)
)

⩽
1

√
m0

W2(µ, µ
′) + dµ′,m0(x).

□
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3.5. The Distance to a Measure is a Distance-Like Function. Recall
that the subdifferential of a function f : Ω ⊂ Rd → R at a point x, denoted
by ∂xf , is the set of vectors v ∈ Rd such that for all small enough vector
h, f(x + h) ⩾ f(x) + ⟨h, v⟩. This gives a characterization of convexity: a
function f : Rd → R is convex if and only if its subdifferential ∂xf is non-
empty for every point x. If this is the case, then f is differentiable at x if
and only if its subdifferential ∂xf is a singleton, in which case the gradient
∇f(x) coincides with its unique element.

Proposition 3.10. The function vµ,m0 : Rd ∋ x 7→ ∥x∥2 − d2µ,m0
(x) is

convex, and its subdifferential at x ∈ Rd is given by

∂xvµ,m0 =

{
2x− 2

m0

∫
Rd

(x− h)dµx,m0(h)

∣∣∣∣µx,m0 ∈ Rµ,m0(x)

}
.

Proof. For any two points x and y of Rd, let µx,m0 and µy,m0 be measures
belonging to Rµ,m0(x) and Rµ,m0(y) respectively. Thanks to Proposition
3.6, we have the following sequence of equalities and inequalities:

d2µ,m0
(y) =

1

m0

∫
Rd

∥y − h∥2 dµy,m0(h)

⩽
1

m0

∫
Rd

∥y − h∥2 dµx,m0(h)

⩽
1

m0

∫
Rd

(
∥x− h∥2 + 2⟨x− h, y − x⟩+ ∥y − x∥2

)
dµx,m0(h)

⩽ d2µ,m0
(x) + ⟨v, y − x⟩+ ∥y − x∥2 ,

where v is the vector defined by

v =
2

m0

∫
Rd

(x− h)dµx,m0(h).

The inequality can be rewritten as(
∥y∥2 − d2µ,m0

(y)
)
−

(
∥x∥2 − d2µ,m0

(x)
)
⩾ ⟨2x− v, y − x⟩,

which shows that the vector (2x − v) belongs to the subdifferential of v at
x. By the characterization of convexity that we recalled above, we get that
vµ,m0 is convex. The proof of the reverse inclusion is slightly more technical
and beyond the scope of the lesson. □

Corollary 3.11. (i) The function d2µ,m0
is 1-semiconcave.

(ii) d2µ,m0
is differentiable almost everywhere in Rd, with gradient

∇xd
2
µ,m0

=
2

m0

∫
Rd

(x− h)dµx,m0(h),

where µx,m0 is the only measure in Rµ,m0(x).

(iii) The function Rd ∋ x 7→ dµ,m0(x) is 1-Lipschitz.

Proof. (i) Already proved.
(ii) Follows from the fact that a convex function is differentiable almost ev-

erywhere, with gradient given by the only element of the sub-differential
at the considered points.
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(iii) The gradient of dµ,m0 can be written as

∇xdµ,m0 =
∇xd

2
µ,m0

2dµ,m0

=
1

√
m0

∫
Rd(x− h)dµx,m0(h)(∫

Rd ∥x− h∥2 dµx,m0(h)
)1/2

.

Using the Cauchy-Schwarz inequality we find ∥∇xdµ,m0∥ ⩽ 1, which
proves the statement.

□

4. Application to Geometric Inference

Reconstruction from point clouds in presence of outliers was the main mo-
tivation for introducing the distance to a measure. In this section, we show
how the extended reconstruction Theorem 1.8 can be applied to distance to
measure functions. It is also possible to adapt most of the topological and
geometric inference results of the Reconstruction of Compact Sets lesson in
a similar way.

4.1. Distance to a Measure vs. Distance to its Support. In this
section, we compare the DTM dµ,m0 of a measure µ and the distance function
dS to its support S = supp(µ), and study the convergence properties of dµ,m0

to dS as the mass parameter m0 goes to zero.
Note that the function δµ,m0 (and hence the DTM dµ,m0 ) is always larger

than the distance function dS , i.e. for all x ∈ Rd, dS(x) ⩽ dµ,m0(x). As a
consequence, to obtain a convergence result of dµ,m0 towards dS as m0 goes
to zero, we just need to upper bound dµ,m0 −dS by a function converging to
0 as m0 goes to 0. It turns out that the convergence rate of dµ,m0 towards
dS depends on the way that µ charges the balls B(p, r) centered at points
p ∈ S, as r decreases. For this, we need to define a few notions:

(i) We say that a non-decreasing positive function f : R⩾0 → R⩾0 is a
uniform lower bound on the growth of µ if for every point p ∈ S and
every ε > 0, µ(B(p, ε)) ⩾ f(ε).

(ii) The measure µ is said to have dimension at most k if there is a constant
Cµ > 0 such that f(ε) = Cµε

k is a uniform lower bound on the growth
of µ, for ε small enough.

Lemma 4.1. Let µ be a Borel probability distribution and f be a uniform
lower bound on the growth of µ. Then ∥dµ,m0 − dS∥∞ < ε as soon as m0 <
f(ε).

Proof. Assume that m0 < f(ε) and let x ∈ Rd be fixed. Write p ∈ S for
any point such that ∥x− p∥ = dS(x). By assumption, µ(B(x,dS + ε)) ⩾
µ(B(p, ε)) ⩾ m0. Hence, δµ,m0(x) ⩽ dS(x)+ε. The map m 7→ δµ,m(x) being
non-decreasing, we get

m0d
2
S(x) ⩽

∫ m0

0
δ2µ,m(x)dm ⩽ m0(dS(x) + ε)2.

Taking the square root of this expression proves the lemma. □
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Corollary 4.2. (i) If the support S of µ is compact, then dS is the uni-
form limit of dµ,m0 as m0 goes to 0:

∥dµ,m0 − dS∥∞ −−−−→
m0→0

0.

(ii) If µ has dimension at most k > 0, then

∥dµ,m0 − dS∥∞ ⩽ C−1/k
µ m

1/k
0 .

Proof. (i) If S is compact, there exists a sequence (xi)i⩾0 of points in S such
that for all ε > 0, S ⊂ ∪ni=1B(xi, ε/2) for some n = n(ε). By definition
of the support of a measure, η(ε) = min1⩽i⩽nµ(B(xi, ε/2)) > 0. Now,
for all x ∈ S, there is a xi such that ∥x− xi∥ ⩽ ε/2. Hence, B(xi, ε/2) ⊂
B(x, ε), which means that µ(B(x, ε)) ⩾ η(ε).

(ii) Follows straightforwardly from Lemma 4.1.
□

4.2. Shape Reconstruction from Noisy Data. The previous results lead
to shape reconstruction theorems that work for noisy data with outliers.
To fit in our framework we consider shapes that are defined as supports
of probability measures. Let µ be a probability measure of dimension at
most k > 0 with compact support K ⊂ Rd and let dK : Rd → R be the
(Euclidean) distance function to K. If µ′ is another probability measure
(e.g. the empirical measure given by a point cloud sampled according to µ),
one has ∥∥dK − dµ′,m0

∥∥
∞ ⩽ ∥dK − dµ,m0∥∞ +

∥∥dµ,m0 − dµ′,m0

∥∥
∞

⩽ ∥dK − dµ,m0∥∞ +
1

√
m0

W2(µ, µ
′).

As expected, the choice of m0 is a trade-off:

– small m0 leads to better approximation of the distance function to the
support, while

– large values of m0 make the distance functions to measures more stable.

The previous bound together with Theorem 1.8 yield the following result.

Corollary 4.3. Let µ be a Borel probability measure and K = supp(µ) its
support. Assume that µ has dimension at most k and that reachα(K) ⩾ R,
for some R > 0. Let µ′ be another measure, and ε ⩾

∥∥dK − dµ′,m0

∥∥
∞.

Then for all r ∈ [4ε/α2, R−3ε], the r-sublevel set of dµ,m0 and the offsets
Kη, for 0 < η < R, are homotopy equivalent as soon as

W2(µ, µ
′) ⩽

R
√
m0

5 + 4/α2
− C−1/k

µ m
1/k+1/2
0 .

Figure 4 illustrates Corollary 4.3 on a sampled mechanical part with 10%
outliers. In this case, µ′ is the normalized sum of the Dirac measures centered
at the data points and the (unknown) measure µ is the uniform measure on
the mechanical part.

5. Further Sources

These notes mainly follow [BCY18] and [CCSM11] .



12 DISTANCE TO A MEASURE

Figure 4. On the left, a point cloud C sampled on a me-
chanical part to which 10% outliers uniformly sampled in
a box enclosing the model have been added. On the right,
the reconstruction of an isosurface of the distance function
dµC ,m0 to the uniform probability measure on this point
cloud.
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